A nucleobase–inorganic hybrid polymer consisting of copper bis(phosphopentamolybdate) and cytosine

Jiabao Weng,*a,b* **Maochun Hong,****^a* **Yucang Liang,***^a* **Qian Shi** *^a* **and Rong Cao** *^a*

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. E-mail: hmc@ms.fjirsm.ac.cn

^b Department of Chemistry, Fujian Teachers University, Fuzhou, Fujian 350007, P. R. China

Received 14th December 2001, Accepted 17th December 2001 First published as an Advance Article on the web 10th January 2002

A nucleobase–inorganic hybrid polymer built from P₂Mo₅O₂₃ and Cu(II)–cytosine subunits has been prepared; **X-ray crystal structure analysis reveals the cytosine molecules weakly coordinate to copper(II) and connect** the $P_2Mo_5O_{23}$ subunit through hydrogen bonds to form **extended 2D networks with complicated hydrogen bonding modes; a bathochromic shift, compared to free cytosine, can be observed in the fluorescence spectra of the hybrid polymer.**

The introduction of an organic component into inorganic material can alter the microstructure,**1,2** which affords a powerful method for the preparation of novel solid-state materials. Such organic–inorganic hybrid materials exploit the unique characteristics, or even new properties, in the complementary design of solid-state structures with different composites. Although many organic molecules have been used in this area, the assembly built from non-covalent interactions between bioactive nucleobases and inorganic materials is less considered. Polyoxomolybdate-phosphorus is a well-known material applied in chemical synthesis because of its capability of allowing a variety of chemical reactions to take place in the intracrystalline region.**3–7** Accordingly, assembly of bioactive nucleobasic and polyoxomolybdate-phosphorus building blocks may yield novel complexes with interesting structures. Herein we report on a novel two-dimensional Mo–P–Cu polymer, $[\text{CuP}_2\text{Mo}_5\text{O}_{23}(\text{H}_2\text{O})_2(\text{Hcyt})_4]$ ⁿ (1) (cyt = cytosine), which is constructed by copper bis(phosphopentamolybdate) and cytosine, a bioactive basic group, through hydrogen bonding. To our knowledge, complex **1** is the first example of a copper bis(phosphopentamolybdate) complex containing a bio-basic group.

Reaction of cytosine, $Na₂MoO₄$ and $Cu(NO₃)₂·6H₂O$ in water, followed by slow addition of a $1 : 1$ H_3PO_4 aqueous solution to adjust the pH value to 3.2, gave rise to pale blue crystals suitable for X-ray structure determination. † Singlecrystal X-ray crystallographic analysis ‡ reveals that the structure of **1** is constructed of $P_2Mo_5O_{23}$ and $[Cu(H_2O)_2(Cyt)_2]$ subunits and two cytosine molecules hydrogen bonding with P**2**Mo**5**O**23**, as shown in Fig. 1. The core structure of the P_2M_0 ₅ O_{23} anion is a five-membered ring formed by five distorted MoO₆ octahedra, in which two oxygen atoms come from tetrahedral PO**4** through sharing of the oxygen vertex, quite similar to that reported by Lu *et al.***⁸***^b* The EPR spectrum of **1** shows hyperfine structure in the *g***||** region: the EPR parameters are $g_{\parallel} = 2.40$; $g_{\perp} = 2.08$ and $A_{\parallel} = 121$ G. The value of the $g_{\parallel}/A_{\parallel}$ quotient of 177 cm for the compound suggests a distorted tetragonal octahedral geometry around $Cu(II)$.⁹ The crystallographic analysis showed that each $Cu(II)$ ion is coordinated by four oxygen atoms, two from coordinated water molecules and two from different PO₄ tetrahedra in a square plane geometry. There is a weak interaction, with a Cu–O distance of 2.77 \AA , between $Cu(II)$ and the oxygen atom from cytosine, thus $Cu(II)$ may also be regarded as a distorted octahedron with high axial

Fig. 1 A subunit of **1** in the crystal, hydrogen atoms are omitted. The weak coordination between $Cu(II)$ and the carbonyl oxygen atom of cytosine and hydrogen bonding interactions are represented by dashed lines.

elongation. Each PO_4 tetrahedron acts as μ_6 -bridge linking five molybdenum and one copper atoms, hence each $Cu(II)$ can be viewed as a linker connecting two $P_2Mo_5O_{23}$ units, forming a one-dimensional chain structure along the c axis. Fig. $2(a)$

Fig. 2 A polyhedral and ball-stick packing view of the $\left[\text{CuMo}_{5}\text{O}_{22}\right]$ $(H_2O)_2(Hcyt)_4$ ^{*n*} chain of **1** viewed down the *b* axis (a) and *c* axis (b). Octahedra and tetrahedra represent Mo and P atoms respectively.

is a representation of the polymeric chain structure viewed down the *b* axis with a period length between adjacent $P_2Mo_5O_2$ ₃ subunits of 9.77 Å. Coordinated water molecules are embedded between the two subunits.

DOI: 10.1039/b111457n *J. Chem. Soc*., *Dalton Trans*., 2002, 289–290 **289**

This journal is © The Royal Society of Chemistry 2002

Fig. 3 Packing diagram of **1** viewed down the *c* axis.

As shown in Fig. 1, 2 and 3, along the *c* axis of the Cu–P–Mo chain, the cytosine molecules are weakly coordinated with $Cu(II)$, and the two nitrogen atoms $N(5)$ and $N(6)$, which hydrogen bond with $O(8)$ and $O(6)$ from adjacent $P_2Mo_5O_{23}$ subunits, bridge the two subunits. Along the *b* axis, the cytosine molecules use the carbonyl oxygen atoms to hydrogen bond with the coordinated water molecules and two nitrogen atoms, $N(1)$ and $N(2)$, with $O(1)$ and $O(2)$ of the $MoO₆$ octahedra in the adjacent Cu–P–Mo chain, which joins the adjacent Cu–P– Mo chains to form an extended two-dimensional network parallel to the *bc* plane.

Although experiments carried out with different pHs for the reaction system, only in the system with $pH = 3.2$ were crystals obtained, which indicates that the pH of the reaction system plays a key role in the assembly process. The successful isolation of **1** provides a novel example of assembling phosphomolybdate subunits *via* a cytosine template. This may open up a new method for the design of organic–inorganic hybrid materials which are usually obtained by hydrothermal techniques.⁸

The free cytosine molecule has an emission at $\lambda = 420$ nm in the solid-state when irradiated with UV light at $\lambda = 330$ nm. In contrast, complex **1** displays a more intense fluorescence emission (λ = 435 nm), as shown in Fig. 4. This fluorescence emission

Fig. 4 The fluorescence spectra of cytosine and compound **1**. The excitation wavelength is 330 nm.

may originate from an intraligand $\pi \rightarrow \pi^*$ transition which gives the electronic absorption of 255 nm for free ligand and 235 nm for the moiety of **1**. As compared to free cytosine, it is observed that the fluorescence intensity of **1** is *ca*. two times larger and bathochromically shifted and that the IR absorption band assigned to $v_{C=0}$ is shifted to lower frequencies and the bands related to v_{ring} and $v_{\text{C-N}}$ centered at about 1466, 1366, 1279 and 1283 cm^{-1} exhibit appreciatable intensity changes and shifts in their frequency, which may be ascribed to the rigidity enhancement in **1** owing to the hydrogen bonding of cytosine with the $[P_2Mo_5O_{23}]$ subunit,¹⁰ though detailed studies may still be needed.

This work was supported by grants of the National Nature Science Foundation of China, Chinese Academy of Science and Hong Kong Polytechnic University.

Notes and references

† Preparation: Na**2**MoO**4**2H**2**O (2.0 mmol, 484 mg) was added to a solution of $Cu(NO₃)₂·3H₂O$ (1.0 mmol, 242 mg) and cytosine, $C_4H_5N_3O$, (1.0 mmol, 110 mg) in distilled water (25 ml). The mixture was stirred for 30 min and then the $1 : 1 (v/v) H₃PO₄$ aqueous solution was slowly added into the reaction system until the pH reached 3.2. The final reaction solution was filtered. The pale blue single crystals suitable for X-ray analysis were obtained after evaporating the filtrate at room temperature for several days. The yield based on Na**2**MoO**4** was 42%. IR (solid state): 3375(s), 3192(s, br), 2926(m), 2710(m), 1701(s), 1660(s), 1585(m), 1543(w), 1410(w), 1238(s), 1150(m), 1115(s), 1045(s), 991(m), 918(s), 901(s), 787(m), 762(m), 704(m), 671(s, br), 580(m), 525(m), $440(m)$, $415(w)$ cm⁻¹.

‡ Reflection data were collected on a Bruker Smart CCD system with Mo-K α radiation ($\lambda = 0.71073$ Å) at 293 K. The structure was solved by direct methods using the SHELXTL program.**¹¹** Non-hydrogen atoms of the complex were refined with anisotropy thermal parameters. Refinement was performed by full-matrix least squares on $F²$. Crystal data: $\text{CuP}_2\text{Mo}_5\text{O}_{23}(\text{H}_2\text{O})_2(\text{C}_4\text{H}_6\text{N}_3\text{O})_4$, crystal size $0.35 \times 0.30 \times 0.30$ mm, *M* = 1202.91, monoclinic, space group *C*2/*c*, *a* = 19.3411(4) Å, $b = 11.4945(2), c = 19.4712(1)$ Å, $\beta = 117.6170(10)$ ^o, $V = 3835.57(11)$ Å³, $Z = 4$, $D_c = 1.262$ Mg m⁻³, $\mu = 1.167$ mm⁻¹, $2.13 < \theta < 25.04^{\circ}$, $R(R_w) =$ 0.0617(0.1653) for 3374 independent reflections with $I > 2\sigma(I)$ and 296 parameters, and $R(R_w) = 0.0825(0.1802)$ for all the data. The goodnessof-fit on F^2 was 1.072, and the residual electron density (min./max.) was 1.965/-2.772 e Å⁻³. CCDC reference number 169347. See http:// www.rsc.org/suppdata/dt/b1/b111457n/ for crystallographic data in CIF or other electronic format.

- 1 (*a*) S. M. Stadler and A. P. Wilkinson, *Chem. Mater.*, 1997, **9**, 2168; (*b*) K. R. Morgan, G. J. Gainsford and N. B. Milestone, *Chem. Commun.*, 1997, 61; (*c*) K. J. Balkus Jr., M. Biscotto and A. G. Gabrielov, *Stud. Surf. Sci. Catal.*, 1997, **105A**, 415.
- 2 (*a*) S. J. Stapp and P. V. Braun, *Science*, 1997, **227**, 1242; (*b*) P. S. Halasyamani, M. J. Drewitt and D. O'Hare, *Chem. Commun.*, 1997, 867; (*c*) V. Day and W. Klemperer, *Science*, 1985, **228**, 533.
- 3 (*a*) P. Feng, X. Bu, S. Tolbert and G. Stucky, *J. Am. Chem. Soc.*, 1997, **119**, 2497; (*b*) V. Soghomonian, Q. Chen, R. Haushalter and J. Zubieta, *Chem. Mater.*, 1993, **5**, 1595; (*c*) P. Zapf, R. Haushalter and J. Zubieta, *Chem. Mater.*, 1997, **9**, 2019; (*d*) T. Gier and G. Stucky, *Nature*, 1991, **349**, 508.
- 4 (*a*) N. Matsumoto, Y. Sunatsuki, H. Miyasaka, Y. Hashimoto, D. Luneau and J.-P. Tuchagues, *Angew. Chem.*, 1999, **111**, 137; N. Matsumoto, Y. Sunatsuki, H. Miyasaka, Y. Hashimoto, D. Luneau and J.-P. Tuchagues, *Angew. Chem., Int. Ed.*, 1999, **38**, 171; (*b*) S. Triki, J. S. Pala, M. Decoster, P. Molinié and L. Toupet, *Angew. Chem.*, 1999, **111**, 155; S. Triki, J. S. Pala, M. Decoster, P. Molinié and L. Toupet, *Angew. Chem., Int. Ed.*, 1999, **38**, 113; (*c*) J. S. Miller and A. J. Epstein, *Chem. Commun.*, 1998, 1319; (*d*) W. E. Buschmann, A. M. Arit and J. S. Miller, *Angew. Chem.*, 1998, **110**, 813; W. E. Buschmann, A. M. Arit and J. S. Miller, *Angew. Chem., Int. Ed.*, 1998, **37**, 781.
- 5 (*a*) E. Yashima, K. Maeda and Y. Okamoto, *Nature*, 1999, **399**, 449; (*b*) C. Piguet, G. Bernadinelli and G. Hopfgartnerr, *Chem. Rev.*, 1997, **97**, 2005.
- 6 (*a*) O. M. Yaghi and H. Li, *J. Am. Chem. Soc.*, 1996, **118**, 295; (*b*) D. Venkataraman, G. B. Gardner, S. Lee and J. S. Moore, *J. Am. Chem. Soc.*, 1995, **117**, 1160.
- 7 (*a*) L. Carlucci, G. Ciani, D. M. Proserpio and A. Soroni, *J. Am. Chem. Soc.*, 1995, **117**, 4562; (*b*) B. F. Hoskins and R. Robson, *J. Am. Chem. Soc.*, 1990, **112**, 1546.
- 8 (*a*) S. M. Stadler and A. P. Wikinson, *Chem. Mater.*, 1997, **9**, 2168; (*b*) J. Lu, Y. Xu, N. K. Goh and S. Chia, *Chem. Commun.*, 1998, 2733–2734.
- 9 U. Sakaguchi and A. W. Addison, *J. Chem. Soc., Dalton Trans*, 1979, 1965.
- 10 (*a*) M. Palanianadavar, I. Somasundaram, M. Lakshminarayanan and H. Manohar, *J. Chem. Soc., Dalton Trans.*, 1996, 1333; (*b*) H. Susi, J. S. Ard and J. M. Puycell, *Spectrochim. Acta, Part A*, 1973, **29**, 725.
- 11 G. M. Sheldrick, SHELXTL, An integrated system for solving, refining and displaying crystal structures from diffraction data (Version 5.1), University of Göttingen, Germany, 1997.